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Free-Convection Laminar Boundary
Layers in Oscillatory Flow

Rarrax SAcarR NANDA* AND VisEN00 PRASAD SHARMA T
Indian Institute of Technology, Kharagpur, India

HE study of laminar boundary layers in oscillatory flow

with a steady mean was initiated by Lighthill,! who
considered the effect of fluctuations of freestream velocity
on the skin friction and heat transfer for plates and eylinders.
Since then various aspects of this problem have been con-
sidered by many workers.?2~* The present note considers
the eorresponding free-convection problem for a vertical flat
plate, when the plate temperature oscillates in time about a
constant nonzero mean while the freestream is isothermal.
The boundary layer equations, in terms of stream function
by which the continuity equation is identically satisfied, are,
in dimensionless form,

Ebyt + K&u"//w - ‘Pz\[/uu =G+ ¢yw (1)
G+ G — .G, = (1/0')Gw 2)

where o is the Prandtl number. The boundary conditions
to be satisfied are

y=20 Yy =¥, =0
G = Gyl + e ek 3)
Yy—> o ¢,— 0 G— 0

Now write ¢ and G as the sum of steady and small oscil-
lating components:

¥ = Az,y) + e B(z,y)

G = P(z,y) + e Qz,y) @
where (A4,P) is the steady mean flow and satisfies
AyAey — A4, = P+ Ay,
AP, — AP, = (1/0)P,, )
y=20 A, =4,=0 P =@
y—> @ A,—0 P—0

Neglecting squares of e and dividing by ™, one finds that
(B,Q) satisfy the following differential set:

twBy + ByA.y + AyBoy — A:Byy — B:dyy = Byyy + @

0@ + A,Q. + B,P. — A.Q, — B.P, = (1/0)Qyy

B, =B,=0 Q=G
B,— 0 Q—0

L ®)

y—) «©
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Method of Solution

Considering set (5), one finds that this is the boundary
layer problem of steady free-convection flow over a vertical
plate and can be reduced to ordinary differential equations
by the similarity transformation

n = y(Go/x)!*
A = 4(Gu3)UF () "
P = Gob(n)
Set (6) is considered next. It is convenient to write B
and € as sums of in-phase and out-of-phase components.

Substitute B = M + N, @ = R + 1S in Eq. (6) and separate
real and imaginary parts to get

— Ny + MyAuy + AyMay — AMyy — MoAyy =

M:’I!ﬂl—l_R
—wS + 4,R, + M,P, — A.R, — M.,P, = (1/0)R,,
y =20 M, =M,=0 R =Gy
Yy—> o ﬂfy—>0 R—0
and 8)

wMZ, -+ NyA:cy + AyNzy - Awa/ - N:v:Ayy =

Ny + 8
wR + 4,8, + N,P. — 4.8, — PN, = (1/0)8,,
N.=N,=8=0
N,— 0 S— 0

y=0

y-—)oo

Low-Frequency Oscillations

Similarity solutions of the partial differential set (8), as
found in the case of set (5), do not exist. However, for
low-frequency oscillations the series expansions '

2 3/4 o
M = — Z pr(n)ﬁlp—l
w =1
5\ 1/4 e
V= (5)" % v
=

S = (@) Y Sy(mart
p=1

where 2, = (zw?/Gp) may be introduced. Substituting in
(8) and equating powers of x;, one obtains the following set
of ordinary equations:
M) + 3FM," — AF'M, + 3F"M, = —R;
(1/a)R," + 3FR) = —30'M,

9
N + 3FN," — 6F'N,’ + 5F'N, = My — 8, ©
(]./(7)81” "— 3FS1, - 2F’Sl = R1 _ %B'Nl
M) + 8FM." — 4nF'M,’ + (4n — 1)F"M, =
—R, — N,/
(1/0)R.” + 8FR,’ — 4(n — 1)F'R, =
=8 — (0 — 1)0'M,
(10)

N.'"" + 8FN,” — (4n + 2)F'N,/ + (4n + 1)F'N, =
Mn’ e Sn

(1/0)8," + 3F8,’ — (4n — 2)F'S, =
R, — (n + D)O'N.

where

n=234...
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High-Frequency Oscillation

If the frequency of oscillation is high enough, Eqs. (6)
reduce to

twBy = By + @
twl = (1/0')ny
from which one easily obtains

Q = Goe'—(’iwa)l/zy
B = [GO/iw(U' - 1)][6_@“’)]/21/ —_ e*(iwa) ]

which is of the “shear-wave” type, predicting a phase ad-
vance of 45° in the local rate-of-heat-transfer fluctuations
and an equivalent phase lag in the skin-friction oscillations.

For sufficiently small values of w, only the first term of the
series expansion will be significantly important. It easily
is verified that M; = F + 9F’ and R, = 0 + 176'. It
then remains to determine Ny and S;.  As a preliminary step,
N and 8; were determined using the von Kdrm4n-Pohlhausen
method.®? The results indicate that there exists a critical fre-
quency wp such that z; = xw?/Gy = 0.7, which separates the
regions of applicability of low- and high-frequency solutions.
However, to predict the results more accurately, these
equations are being integrated numerically, and the results
will be presented in a separate paper.
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Structural Damping

R. H. ScaNpan* axp A. MENDELSON T

Case Institute of Technology, Cleveland, Ohio

RE certain mathematical models of structural damping
physically unrealizable? It is probable that true damp-
ing mechanisms in structures are of a quite complicated
character. However, in a good many practical cases, it has
appeared possible to account in a reasonable measure for the
damping in an overall way by means of a linear model. It
goes without saying that this model must be free of gross
anomalies; a poor model may confuse the situation. When
the simplified model has been chosen, nothing other than an
approximation to the overall effect of the dampingis expressed
concerning the true damping mechanism. To inquire, then,
into whether one or another simplified model itself is physi-
cally realizable or unrealizable would appear to be.a less re-
warding side of the question. Crandall, in a recent publica-
tion! raises the question of the physical realizability of one
of the most familiar linear damping models; the present note
discusses this model.
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The damping model in question was employed in 1938 by
Theodorsen and Garrick? in early flutter studies, and they
ascribed it to Becker and Foppl. Specifically, it employs the
device of introducing linear structural damping into the typi-
cal flutter equations having complex coefficients, not as a
viscous velocity term, but as a term tgw,%r, where ¢ = (—1)V2,
¢ > 0 is a damping coefficient, and « is displacement of a
typical degree of freedom, the natural circular frequency of
which is w,. This device has the well-known effect of creat-
ing a damping term in phase with velocity 4 and proportional
to a displacement 2 which has the form e with w > 0, since
the term is advanced 90° in phase by the factor 7. Note
that, in this sense, since the usual flutter analysis of the type
alluded to was made precisely for nondecaying sinusoidal
oscillations of the form e only, the device is effective in its
intended purpose within this context. Therein, incidentally,
no occasion arises to consider w other than positive.

As an equation typical of this situation, consider the fol-
lowing:

&4+ (1 + 1g)ole = At 1)

where w, is the natural circular frequency of the undamped
system and w > 0 is the forcing circular frequency, A being
some complex constant.

Briefly recall here the solution of Eq. (1): it consists of
the free vibration (solution for A = Q) plus a forced vibration
at circular frequency w. Crandall! raises the question of the
physical unrealizability of the solution of Eq. (1) “if . . .
negative frequencies are to be considered . . ..” Normally,
as was pointed out, only positive o is considered in the forced
vibration. “Negative frequencies” are to be considered in
Eq. (1), therefore, only in the cases where the situation de-
seribed by Eq. (1) is extended to other meanings than the
one originally intended (such as modification to greater
generality of the right-hand side and, In particular, an ex-
tension into the negative Fourier domain) or in the homo-
geneous case, i.e., the free vibration. In examining the free
vibration an anomaly is, in fact, encountered. It is found
that, for arbitrary initial conditions, and for either g > 0 or
g < 0, no decaying solution exists, but rather there always
exists a portion of the solution having exponentially inecreas-
ing amplitude with time. This is demonstrated as follows:
Let g be positive or negative. Take A = 0in Eq. (1) and
assume a solution in the form

T = xoetwd
with w¢ = @, + tw; (w,,w; real). Use of this solution in Eq.
(1) yields
—w? 4+ @A 4 ig) = 0
which in turn gives the following solutions for w, and w;:

+ [1 tot g2>1/2}1f2

Wy =

w; = £ w,

g
RO+ (1 + gy
The solution for z is then
T = xmeith _l_ xweiwzt

with 24 and zge arbitrary constants and

2\1/2771/2
9_1} . {[li.(_“r_g)_] n
(O3 2

. g
RO+ drf gzwnw}

If one insists that the solution must represent a decaying
motion for arbitrary initial conditions (zg, 2o == 0), the sign




